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Abstract

This paper presents an accurate full-wave approach
to the analyses of current distribution on a unilateral finline
containing finite metal conductivity and thickness. The elec-
tromagnetic fields are rigorously represented in terms of a
complete set of modes, and this allows the classification of the
current distributions as edge currents and surface currents
contributed by the air modes and the metal modes, respec-
tively. Such an approach provides a clear physical picture for
understanding of the cross-sectional current distributions
throughout the metal strips, whereby the skin-effect in every
direction can be explained. Finally the full-wave analysis es-
tablishes a solid basis on which the applicability of the pertur-
bation method can be judged.

Introduction

Since finlines have become very popular in millime-
ter-wave integrated circuits, a number of workers{1-3] have
extensively analyzed propagation characteristics such as
phase constant, characteristic impedance, and loss. Most
workers assumed that the metal strips on the finline are
perfectly conducting and should be infinitely thin in order to
simplify the analysis. In practice, however, the metal strips
have finite thickness and conductivity. Thisis closely related to
the complex dispersion characteristics [4] and the power-
handling capability [S] of the finline. Both mandate full
knowledge of current distributions throughout the metal
strips of the finline, including the skin-effect of the surface and
edge currents on the surface of the metal as well as the bulk
current within the metal. To the authors’ knowledge, this im-
portant issue has not yet been analyzed and discussed in de-
tail.

Here, we extend the full-wave approach based on the
mode-matching method employing a complete set of
eigenfunctions describing the electromagnetic field proper-
ties of the metal strips with finite conductivity [4]. For the first
time, it is shown that skin-effect current distributions can be
classified into two categories, namely, edge currents and
surface currents contributed by the air modes and the metal
modes, respectively. The significance of such classification is
at least twofold.
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First, the physical insight of the skin-effect currents
can be fully exposed by knowing the respective edge and
surface current contributions from the air modes and the
metal modes. This is achieved by the asymptotic expression of
the individual eigenfunction asscciated with the air modes
and the metal modes in the metal strip regions. Section II de-
scribes such a procedure briefly. In Section III, numerical
data are presented for typical structures and are explained on
the basis of asymptotic expressions for the skin-effect cur-
rents. Second, based on the exact analytic expressions for the
mode functions, the applicability of the perturbation theory
for transmission line loss analysis can be determined. Thus, it
will become obvious when the amplitude of the surface cur-
rent near the edge of the metal fin is comparable to that of the
edge current and when the perturbation approach can no
longer hold.

The Asymptotic Expressions for
the Edge Currents and Surface Currents

Fig. 1shows the cross-section of a unilateral finline. In
treating the symmetrical case of the unilateral finline, the
structure can be placed by a perfect electric conductor(PEC)
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Fig.1 The symmetrical unilateral finline with finite conductivity

and thickness. b=3.556 mm, c=0.889 mm, d=2.667 mm, h; =3.4925

mm, h=0.127 mm, t+h,=3.4925 mm, ¢;=¢,=¢,=1, £,=2.22,

e,=1-jolwe , and 0=3.333x107 S/m.
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plane at x=b/2 for the odd modes. To employ the mode
matching method{4], the structure may be divided into four
sub-regions: three uniform regions and one nonuniform layer
region containing the metal strip. The eigenvalue equation
for the nonuniform layer region is
tan{x,w,)cot(k w_)=-Z /Z, €))

where w_+w, =b/2, K=K (&-8,)"% Z=wy J, for the TE
mode and Z.=«/we ¢, for the TM mode. The subscript i may
stand for either “a” or “m” to denote the air region or metal
region, correspondingly. The aim of this section is to
determine the asymptotic expressions for the current
densities in the metal strips. A TE mode has its electric field in
the y and z directions and is expected to induce a larger
current than a TM mode does for a case of high conductivity
of metal strips. Although we do employ hybrid modes to
analyze the finline structure, the analytic expressions are
given here only for TE modes, just toillustrate the underlying
mathematical and physical concepts.

(a) Edge Currents : Contributed by the Air Modes

The electric field of 2 TE mode is polarized in the z di-
rection. The normalized mode function of an air mode is
simply given by

@ (x)=sin(k(w, +W, X)), W, <x<w_+w,_ (2a)
@ _(x)=sin(k,w,)sin(x_x)/sin(k,w_),
Osx=sw_ (2b)
Invoking (1), we find that for the n® TE mode, the transverse
phase constant is given by
P ®
for n=1, 2, 3,... Thus, for a good conductor the electric field
E®__(x) in the metal region is given approximately by

(14w x)/S
E(a)zm(x)-_-Eszé'e (1+))(wWm-x)/ (4)
where E  is an arbitrary constant and ¢ is the skin depth. The
conduction current density J is defined as the product oE.
The edge current associated with an air mode is given by

)

whereJ , is an arbitrary constant, depending on the source of
excitation, Evidently, (5) manifests the fact that edge current
decays exponentially from the surface at x=w_ into the metal
as the skin-effect theory predicts. Similarly, the other tangen-
tial component of a current polarized in the y direction can be
obtained as follows

U(a)ze(x)l =Jzoe-(wm-xy6/ ¢

@, ()l=] g a5 (©)

where J ¥ is an arbitrary constant. A small normal component
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of electric field E, also exists in the conductor, and it should
be derived from the TM mode which is expressed in terms of
cos(k,(b/2-x)) form in contrast to (2a). J, can be derived as

@ (%)= gwe Mo 7

where J , is an arbitrary constant.

(b) Surface Currents :
Modes

Contributed by the Metal

The normalized mode function of a TE metal mode is
simply given by:

O™ (x)=sin(xx), 0=x=w, (8a)
CD(m)a(x) =sin(x,w_)sin(x (W, +w_x))fsin(x,w,),
W, SXSW W, (8b)

Invoking (1), the transverse phase constant is given by:

K =0T %

for n=1, 2, 3, ... For the n'" TE metal mode, the electric field
in the metal region varies sinusoidally over the surface of the
strip (fromx=0tow, ), as given by (8a). The total surface cur-
rent is the superposition of the individual current contributed
by all the metal modes as follows

@) (=2, wsin(nms/w_) (10

wherelJ_, isanarbitrary constant, depending on the source of
excitation and the structural parameters. The surface cur-
rents contribute to the bulk current distributions inside the
metal not dealt with before in the literature. Obviously, such
surface currents will be responsible for another skin-effect in
the direction perpendicular to the fin.

Results

Given a case with the structural and material parame-
ters shown in Fig. 1, the complex propagation constant of the
dominant finline mode can be found rigorously [4]. Here we
apply 50 air and metalmodes to investigate the edge currents
and surface currents, respectively. It is noted that the data
presented herein are normalized such that the Poynting
power carried by the dominant finline mode is one watt.

Figs. 2(a) and (b) plot the slot-fields (E_and E ) in the
air region (¢&,) and current densities (J, and J ) in the metal
region (&_) versus normalized coordinates along the x direc-
tionat different locations, y, andyy,, for a particular case where
the ratio of metal thickness to the skin depth (t/6) is 11.5. In
(10), the metal modes produce the surface currents com-
puted by including 50 harmonic terms. Both current densities
J ,and ], decay in e 291 factor along the y direction except
atx=c, where there exist the edge currents and the skin-effect
in they direction is no longer visible. From Figs. 2 (a) and (b),



we observe that the electric fields in the slot region remain
relatively unchanged with respect to the locations. It is
pointed out that the tangential electric fields E , and E , along
the edge located at x=c give rise to the large edge current

densities J,, and J_,, respectively.
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Fig.2 The slot-fields (E, and E,) in air region (¢,) and current
densities (J, and J,) in metal region (£,,) versus normalized coordi-
nates along the x direction, ¢=3.333x107 S/m, W/b=0.5, frequency
= 40 GHz, and t=5 ym. (a)along y=0.25 ym. (b)along y=0.75 ym.

Fig. 3 plots the surface currents (dotted line), edge
currents (dashed line), and the total composite currents (solid
line), respectively, for a gold-plated finline. The data for the
surface currents and the edge currents are taken near x=¢
and along y=0.25 ym. As expected for a finline with a good
metal coating, the edge currents contributed by the air modes
decay exponentially from the metal edge atx=c as (5) and (7)
describe. Since the conductivity is high, the current densities
at the edge of the metal strip are mainly contributed by the
edge currents as shown in Fig. 3. The surface currents J_ and
J,, indeed represent the bulk current distributions inside the
metal, whereas the edge currents diminish quickly. This
means the bulk currents inside the metal strip are dominated
by the surface currents. (10) explains this finding, since the
surface currents are the summation of the sinusoidal terms.

Changing the value of conductivity from 3.333x107 S/
mto 1.%10%S/m, Fig. 4 plots the edge currents and the surface
currents and maintains all the physical and material parame-
ters identical to Fig. 3. While (5) and (7) still apply to the edge
currents, the surface currents near the edge of the metal strip
are no longer negligible. Thus the total currents near the
metal edge deviate from the edge currents. Asaconsequence,
the perturbation theory for the transmission line loss analysis
can not be applied. By the classification of the total composite

currents of the metal strip into edge currents and surface
currents, the physical reasons why the perturbation theory
won’t work now become clear.

Fig. 5 plots the total currents at the metal edge, x=c,
against various values of the conductivity. Based on (5) and
(6), the magnitudes of J, and J_ are indeed proportional to the
square root of the conductivity. Using (7), the magnitude of J,
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Fig.3 The edge currents, surface currents, and total currents
versus normalized coordinates near x=c along y=025 ym,
0=3.333x107 S/m, W/b=0.5, frequency = 40 GHz, and t=5 ym.
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Fig.4 The edge currents, surface currents, and total currents
versus normalized coordinates near x=c along y=0.25 ym,

0=1.x10% S/m, W/b=0.5, frequency = 40 GHz, and t=5 ym
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should remain constant when the values of the conductivity
vary. Indeed, IJ ] is nearly constant. The same conclusions can
be drawn by applying the perturbation theory [6]. Therefore
any deviations from the straight lines obtained by the asymp-
totic expressions in Section IT will imply that the perturbation
theory starts to break down. In the particular case study
shown in Fig. 5, the lower the value of the conductivity, the
more deviations of the currents from straight lines. There-
fore, the perturbation theory won't apply to the case of a
metal strip with low conductivity.

In the limit of infinite conductivity; the skin depth
vanishes, and it should be noted that the current densities J,
andJ_located at x=c become singular. It is also interesting to
see thatJ (x=c) keeps constant. This fact implies that the line
of current flow is terminated by the time derivative of the
charge on the surface[7]. Referring to the equation of conti-
nuity, the amplitude of surface charge density can be obtained
and is approximately equal to 7.66x 101! C/cm? at the operat-
ing frequency of 40 GHz.
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Fig.5 Thetotal currents located at the metal edge (x=c, and y=t/
2)versus the conductivity of metal strips, W/b=0.5, frequency = 40
GHz, and t=2 ym.

Conclusions

A full-wave approach to evaluate the current density
on the metal strips of the unilateral finline is presented. The
currents on the metal strips consist of the edge currents and
surface currents contributed by the air and metal modes,
respectively. In the particular case studied, this classification

flis
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of the currents can derive asymptotic expressions for the skin-
effect currents throughout the metal strips and enable us to
know physically when the perturbation theory holds.

At a fixed operating frequency, the skin depth de-
creases with increasing conductivity. At infinite conductivity,
the skin depth vanishes and the tangential current densities at
the edge of the metal strip become singular. In contrast, the
normal current density located at the edge is no longer zero
and keeps constant, which is provided by the time derivative of
charge on the surface.
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